Однородное координатное кольцо - Homogeneous coordinate ring

В алгебраической геометрии , то однородный координатное кольцо R в качестве алгебраического многообразия V данного в качестве подмногообразия из проективного пространства данной размерности N является по определению фактора - кольцо

R = K [ X 0 , X 1 , X 2 , ..., X N ] /  I

где I - однородный идеал, определяющий V , K - алгебраически замкнутое поле, над которым определено V , и

K [ X 0 , X 1 , X 2 , ..., X N ]

это кольцо многочленов в N + 1 переменных X I . Следовательно, кольцо многочленов является однородным координатным кольцом самого проективного пространства, а переменные являются однородными координатами для данного выбора базиса (в векторном пространстве, лежащем в основе проективного пространства). Выбор базиса означает, что это определение не является внутренним, но его можно сделать так, используя симметрическую алгебру .

Формулировка

Поскольку V предполагается многообразием и, следовательно, неприводимым алгебраическим множеством , идеал I может быть выбран в качестве простого идеала , и поэтому R является областью целостности . То же определение можно использовать для общих однородных идеалов, но результирующие координатные кольца могут тогда содержать ненулевые нильпотентные элементы и другие делители нуля . С точки зрения теории схем, эти случаи могут быть рассмотрены на одинаковых основаниях с помощью конструкции Proj .

Не имеет значение идеала J , порожденные всеми X я соответствую пустому множеству, так как не все однородные координаты может исчезнуть в точке проективного пространства.

Проективные нули дают взаимно однозначное соответствие между проективными сортами и однородными идеалами я не содержащими J .

Резолюции и сизигии

При применении гомологича методов алгебраической геометрии, он был традиционным , так как Давид Гильберт (хотя современная терминология отличается) применять свободные решения о R , рассматриваемые как градуированный модуль над кольцом многочленов. Это дает информация о сизигиях , а именно отношения между образующим идеалом I . В классической точке зрения, такие генераторы просто уравнение выписывается для определения V . Если V - гиперповерхность, должно быть только одно уравнение, а для полных пересечений число уравнений можно принять за коразмерность; но общее проективное многообразие не имеет столь прозрачной определяющей системы уравнений. Подробные исследования, например канонических кривых и уравнений, определяющих абелевы многообразия , показывают геометрический интерес к систематическим методам обработки этих случаев. Предмет также вырос из теории исключения в ее классической форме, в которой редукция по модулю I должна стать алгоритмическим процессом (который сейчас реализуется на практике базами Грёбнера ).

По общим причинам существуют свободные резольвенты R как градуированного модуля над K [ X 0 , X 1 , X 2 , ..., X N ]. Разрешение определяется как минимальное, если изображение в каждом модульном морфизме свободных модулей

φ: F яF я - 1

в разрешении лежит в JF i - 1, где J - нерелевантный идеал. Как следствие леммы Накаямы , φ переводит данный базис в F i в минимальный набор образующих в F i - 1 . Понятие минимальной свободной резольвенты хорошо определено в сильном смысле: единственное с точностью до изоморфизма цепных комплексов и встречающееся как прямое слагаемое в любой свободной резольвенте. Поскольку этот комплекс является внутренним для R , можно определить градуированные числа Бетти β i, j как количество изображений степени j, поступающих из F i (точнее, думая о φ как о матрице однородных многочленов, количество записей этой однородной степени, увеличенной оценками, полученными индуктивно справа). Другими словами, веса всех свободных модулей могут быть выведены из разрешения, а градуированные числа Бетти подсчитывают количество генераторов с заданным весом в данном модуле разрешения. Свойства этих инвариантов V в данном проективном вложении вызывают активные исследовательские вопросы, даже в случае кривых.

Есть примеры, когда минимальное свободное разрешение известно явно. Для рациональной нормальной кривой это комплекс Игона – Норткотта . Для эллиптических кривых в проективном пространстве разрешение может быть построено как конус отображения комплексов Игона – Норткотта.

Регулярность

Кастельнуово-Mumford закономерность может быть считана с минимальным разрешением идеала I , определяющего проективное многообразие. С точки зрения вмененных «сдвигов» a i , j в i -м модуле F i , это максимум по i из a i , j - i ; поэтому оно мало, когда сдвиги увеличиваются только на единицу при перемещении влево в разрешении (только линейные сизигии).

Проективная нормальность

Многообразие V в проективном вложении является проективно нормальным , если R является целозамкнуто . Из этого условия следует, что V - нормальное многообразие , но не наоборот: свойство проективной нормальности не зависит от проективного вложения, как показано на примере рациональной кривой квартики в трех измерениях. Другое эквивалентное условие относится к линейной системе дивизоров на V, высекаемой двойственным тавтологическому линейному расслоению на проективном пространстве и его d -м степеням при d = 1, 2, 3, ...; когда V является неособым , то проективно нормально тогда и только тогда , когда каждая такой линейной системой является полной линейной системой . В качестве альтернативы можно думать о двойственном тавтологическом линейном расслоении как о скрученном пучке Серра O (1) на проективном пространстве и использовать его для скручивания структурного пучка O V любое количество раз, скажем k раз, получая пучок O V ( к ). Тогда V называется k -нормальным, если глобальные сечения O ( k ) сюръективно отображаются в секции O V ( k ) для данного k , и если V 1-нормальное, оно называется линейно нормальным . Неособое многообразие является проективно нормальным тогда и только тогда, когда оно k -нормально для всех k ≥ 1. Линейная нормальность также может быть выражена геометрически: V как проективное многообразие не может быть получено изоморфной линейной проекцией из проективного пространства более высокой размерности. , за исключением тривиального пути, лежащего в собственном линейном подпространстве. Аналогичным образом можно преобразовать проективную нормальность, используя достаточное количество отображений Веронезе, чтобы свести ее к условиям линейной нормальности.

Если посмотреть на проблему с точки зрения данного очень обильного линейного расслоения, порождающего проективное вложение V , такое линейное расслоение ( обратимый пучок ) называется нормально порожденным, если вложенное V проективно нормально. Проективная нормальность - это первое условие N 0 из последовательности условий, определенных Грином и Лазарсфельдом. Для этого

рассматривается как градуированный модуль над однородным координатным кольцом проективного пространства, и берется минимальная свободная резольвента. Условие N p применяется к первым p градуированным числам Бетти, требуя, чтобы они обращались в нуль, когда j > i + 1. Для кривых Грин показал, что условие N p выполняется, когда deg ( L ) ≥ 2 g + 1 + p , что для p = 0 был классическим результатом Гвидо Кастельнуово .

Смотрите также

Заметки

Ссылки