Ороцикл - Horocycle

Синий орицикл в модели диска Пуанкаре и некоторые красные нормали. Нормали асимптотически сходятся к верхней центральной идеальной точке .

В гиперболической геометрии , A орицикл ( греческий : ὅριον + κύκλος - граница + круг, иногда называемый орицикл , oricircle , или предельный кругом ) является кривым, нормальным или перпендикулярными геодезическими всеми асимптотически сходятся в том же направлении. Это двумерный случай орисферы (или орисферы ).

Центр орицикла - это идеальная точка, в которой асимптотически сходятся все нормальные геодезические. Два орицикла с одним и тем же центром концентрически . Хотя кажется, что два концентрических орицикла не могут иметь одинаковую длину или кривизну, на самом деле любые два орицикла конгруэнтны .

Орицикл также можно описать как предел кругов, имеющих общую касательную в данной точке, поскольку их радиусы стремятся к бесконечности . В евклидовой геометрии такой «круг бесконечного радиуса» был бы прямой линией, но в гиперболической геометрии это орицикл (кривая).

С выпуклой стороны орицикл аппроксимируется гиперциклами , расстояния от оси которых уходят в бесконечность.

Характеристики

Гиперболический апейрогон example.png
  • Через каждую пару точек проходит по 2 орицикла. Центры орициклов - идеальные точки серединного перпендикуляра отрезка между ними.
  • Никакие три точки орицикла не лежат на прямой, окружности или гиперцикле.
  • Прямая линия , круг , Гиперцикл или другие сокращения орицикла орициклом в двух точках.
  • Серединный перпендикуляр хорды орицикла является нормалью к орициклу и делит пополам дугу, образуемую хордой.
  • Длина дуги орикруга между двумя точками:
длиннее, чем длина отрезка между этими двумя точками,
длиннее, чем длина дуги гиперцикла между этими двумя точками и
короче, чем длина любой дуги окружности между этими двумя точками.
  • Расстояние от орицикла до его центра бесконечно, и хотя в некоторых моделях гиперболической геометрии кажется, что два «конца» орицикла становятся все ближе и ближе друг к другу и ближе к его центру, это неверно; два «конца» орицикла удаляются все дальше и дальше друг от друга.
  • Обычный апейрогон ограничен либо орициклом, либо гиперциклом.
  • Если C - центр орицикла, а A и B - точки на орицикле, то углы CAB и CBA равны.
  • Площадь сектора орицикла (область между двумя радиусами и орициклом) конечна.

Стандартизированная гауссова кривизна

Когда гиперболическая плоскость имеет стандартизованную гауссову кривизну K, равную −1:

  • Длина ˙s дуги орикруга между двумя точками:
где d - расстояние между двумя точками, а sh и ch - гиперболические функции .
  • Длина дуги орицикла такая, что касательная на одном конце ограничивается параллельно радиусу, проходящему через другой конец, равна 1. Площадь, заключенная между этим орициклом и радиусами, равна 1.
  • Отношение длин дуги между двумя радиусами двух концентрических орициклов, где орициклы находятся на расстоянии 1 друг от друга, равно e  : 1.

Представления в моделях гиперболической геометрии

Порядок-3 apeirogonal плиточных , {∞, 3}, заполняет гиперболическую плоскость с apeirogons , вершины которых существует вдоль орициклических пути.

Модель диска Пуанкаре

В модели диска Пуанкаре гиперболической плоскости орициклы представлены окружностями, касающимися граничной окружности, центр орицикла - идеальная точка, в которой орицикл касается граничной окружности.

Конструкция циркуля и линейки двух орициклов, проходящих через две точки, является той же конструкцией конструкции CPP для особых случаев задачи Аполлония, когда обе точки находятся внутри окружности.

Модель полуплоскости Пуанкаре

В модели полуплоскости Пуанкаре орициклы представлены окружностями, касающимися линии границы, и в этом случае их центр является идеальной точкой, в которой окружность касается линии границы.

Когда центр орицикла является идеальной точкой, тогда орицикл представляет собой линию, параллельную линии границы.

Конструкция циркуля и линейки в первом случае является той же конструкцией, что и конструкция LPP для Частных случаев задачи Аполлония .

Модель гиперболоида

В модели гиперболоида они представлены пересечениями гиперболоида с плоскостями, нормаль которых лежит в асимптотическом конусе.

Метрическая

Если метрика нормирована на гауссову кривизну  −1, то орицикл - это кривая геодезической кривизны  1 в каждой точке.

Смотрите также

Круги в аполлонической прокладке , которые касаются внешней окружности, можно рассматривать как орициклы в модели диска Пуанкаре.

использованная литература