Кольцо Стэнли – Рейснера - Stanley–Reisner ring

В математике кольцо Стэнли – Райснера или кольцо граней - это фактор алгебры многочленов над полем по бесквадратному мономиальному идеалу . Такие идеалы описываются более геометрически в терминах конечных симплициальных комплексов . Конструкция кольца Стэнли – Райснера является основным инструментом алгебраической комбинаторики и комбинаторной коммутативной алгебры . Его свойства исследовали Ричард Стэнли , Мелвин Хохстер и Джеральд Райснер в начале 1970-х годов.

Определение и свойства

Для абстрактного симплициального комплекса ∆ на множестве вершин { x 1 , ..., x n } и поля k соответствующее кольцо Стэнли – Рейснера или кольцо граней , обозначенное k [∆], получается из кольца многочленов k [ x 1 , ..., x n ] путем выделения идеала I Δ, порожденного бесквадратными одночленами, соответствующими неграням Δ:

Идеал I Δ называется идеалом Стэнли – Райснера или гранным идеалом Δ.

Свойства

  • Стенли-Райснер к [Δ] является мультиградуированным по Z п , где степень переменного х я это я й стандартного базиса вектор е я из  Z н .
  • Как векторное пространство над k кольцо Стэнли – Райснера кольца ∆ допускает разложение в прямую сумму
слагаемые k [Δ] σ которого имеют базис из одночленов (не обязательно бесквадратных) с носителями на гранях σ многогранника Δ.
  • Размерность Крулля из к [Δ] на единицу больше , чем размерность симплициальном комплекса Д.
  • Мультиградуированная, или в порядке , ряд Гильберта из K [А] дается формулой
  • Обычный или грубый ряд Гильберта k [Δ] получается из его мультиградуированного ряда Гильберта, устанавливая степень каждой переменной x i равной 1:
где d = dim (Δ) + 1 - размерность Крулля k [Δ], а f i - количество i- граней Δ. Если это записано в виде
тогда коэффициенты ( h 0 , ..., h d ) числителя образуют h -вектор симплициального комплекса Δ.

Примеры

Принято считать, что каждая вершина { x i } является симплексом в Δ. Таким образом, ни одна из переменных не принадлежит идеалу Стэнли – Райснера  I Δ .

  • Δ - симплекс { x 1 , ..., x n }. Тогда I Δ - нулевой идеал и
является алгеброй многочленов от n переменных над  k .
  • Симплициальный комплекс Δ состоит из n изолированных вершин { x 1 }, ..., { x n }. затем
а кольцо Стэнли – Райснера - это следующее усечение кольца многочленов от n переменных над k :
  • Обобщая предыдущие два примера, пусть ∆ будет d -скелетом симплекса { x 1 , ..., x n }, таким образом, он состоит из всех ( d  + 1) -элементных подмножеств { x 1 , ..., x n }. Тогда кольцо Стэнли – Райснера является следующим усечением кольца многочленов от n переменных над k :
  • Предположим, что абстрактный симплициальный комплекс Δ является симплициальным соединением абстрактных симплициальных комплексов Δ на x 1 , ..., x m и Δ ′ ′ на x m +1 , ..., x n . Тогда кольцо Стэнли – Райснера кольца ∆ является тензорным произведением над k колец Стэнли – Райснера колец ∆ и ∆ ′ ′ :

Условие Коэна – Маколея и гипотеза о верхней оценке

Кольцо граней k [∆] является мультиградуированной алгеброй над k, все компоненты которой относительно тонкой градуировки имеют размерность не больше 1. Следовательно, его гомологии можно изучать комбинаторными и геометрическими методами. Абстрактный симплициальный комплекс Δ называется кольцом Коэна – Маколея над k, если его кольцо граней является кольцом Коэна – Маколея . В своей диссертации 1974 г. Джеральд Рейснер дал полную характеристику таких комплексов. Вскоре за этим последовали более точные гомологические результаты о лицевых кольцах Мелвина Хохстера. Затем Ричард Стэнли нашел способ доказать гипотезу о верхней границе для симплициальных сфер , которая была открыта в то время, используя конструкцию кольца граней и критерий Коэна – Маколея Райснера. Идея Стэнли о переводе сложных гипотез алгебраической комбинаторики в утверждения коммутативной алгебры и их доказательстве с помощью гомологической техники стала источником быстро развивающейся области комбинаторной коммутативной алгебры .

Критерий Рейснера

Симплициальный комплекс ∆ называется Коэном – Маколеем над k тогда и только тогда, когда для всех симплексов σ ∈ ∆ все редуцированные симплициальные группы гомологий линка σ в ∆ с коэффициентами в k равны нулю, кроме топ-размерной:

Результат, полученный Мункресом, показывает, что коэново-маколейность Δ над k является топологическим свойством: она зависит только от класса гомеоморфизма симплициального комплекса Δ. А именно, пусть | Δ | - геометрическая реализация Δ. Тогда обращение в нуль симплициальных групп гомологий в критерии Рейснера равносильно следующему утверждению о редуцированных и относительных группах особых гомологий | ∆ |:

В частности, если комплекс Δ является симплициальной сферой , то есть | Δ | гомеоморфно сфере , то оно коэна – Маколея над любым полем. Это ключевой шаг в доказательстве гипотезы о верхней границе Стэнли. Напротив, существуют примеры симплициальных комплексов, коэн-маколейность которых зависит от характеристики поля  k .

Ссылки

  • Мелвин Хохстер , кольца Коэна-Маколея, комбинаторика и симплициальные комплексы . Теория колец, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), pp. 171–223. Конспект лекций в Pure и Appl. Math., Vol. 26, Деккер, Нью-Йорк, 1977.
  • Стэнли, Ричард (1996). Комбинаторика и коммутативная алгебра . Успехи в математике. 41 (Второе изд.). Бостон, Массачусетс: Birkhäuser Boston. ISBN 0-8176-3836-9. Zbl  0838.13008 .
  • Брунс, Винфрид; Герцог, Юрген (1993). Кольца Коэна – Маколея . Кембриджские исследования в области высшей математики. 39 . Издательство Кембриджского университета . ISBN 0-521-41068-1. Zbl  0788.13005 .
  • Миллер, Эзра; Штурмфельс, Бернд (2005). Комбинаторная коммутативная алгебра . Тексты для выпускников по математике. 227 . Нью-Йорк, штат Нью-Йорк: Springer-Verlag . ISBN 0-387-23707-0. Zbl  1090.13001 .

дальнейшее чтение

внешние ссылки