Спин-1/2 - Spin-1/2

Отдельная точка в космосе может вращаться непрерывно, не запутываясь. Обратите внимание, что после поворота на 360 ° спираль переворачивается между ориентацией по часовой стрелке и против часовой стрелки. Он возвращается в исходную конфигурацию после полного поворота на 720 °.

В квантовой механике , спин является неотъемлемым свойством всех элементарных частиц . Все известные фермионы , частицы, составляющие обычную материю, имеют спин1/2. Число вращения описывает, сколько симметричных граней имеет частица за один полный оборот; вращение1/2означает, что частица должна быть повернута на два полных оборота (на 720 °), прежде чем она приобретет ту же конфигурацию, что и при запуске.

Частицы с чистым вращением 1/2включают протон , нейтрон , электрон , нейтрино и кварки . Динамика спин-1/2объекты нельзя точно описать с помощью классической физики ; они относятся к числу простейших систем, для описания которых требуется квантовая механика . Таким образом, изучение поведения спиновых1/2системы составляют центральную часть квантовой механики .

Эксперимент Штерна – Герлаха.

Необходимость введения полуцелого спина экспериментально восходит к результатам эксперимента Штерна – Герлаха . Пучок атомов проходит через сильное неоднородное магнитное поле , которое затем разделяется на N частей в зависимости от собственного углового момента атомов. Было обнаружено, что для атомов серебра пучок разделялся на две части - поэтому основное состояние не могло быть целым числом, потому что даже если собственный угловой момент атомов был наименьшим (ненулевым) целым возможным числом, 1, пучок будет разделен на 3 части, соответствующие атомам с L z  = −1, +1 и 0, причем 0 - это просто значение, которое, как известно, находится между -1 и +1, а также само целое число, и, следовательно, допустимое квантованное число спинов в этом случае. Существование этого гипотетического «дополнительного шага» между двумя поляризованными квантовыми состояниями потребовало бы третьего квантового состояния; третий луч, которого не наблюдается в эксперименте. Был сделан вывод о том, что чистый собственный угловой момент атомов серебра равен1/2.

Общие свойства

Эвристическое изображение конусов спинового углового момента для спиновой1/2 частица.

Вращаться-1/2все объекты являются фермионами (факт, объясняемый теоремой спиновой статистики ) и удовлетворяют принципу исключения Паули . Вращаться-1/2частицы могут иметь постоянный магнитный момент вдоль направления их спина, и этот магнитный момент вызывает электромагнитные взаимодействия, зависящие от спина. Одним из таких эффектов, который сыграл важную роль в открытии спина, является эффект Зеемана , расщепление спектральной линии на несколько компонентов в присутствии постоянного магнитного поля.

В отличие от более сложных квантово-механических систем, спин спинового1/2Частица может быть выражена как линейная комбинация всего двух собственных состояний , или собственных спинов . Они традиционно обозначаются как ускорение и замедление. Благодаря этому квантово-механические спиновые операторы могут быть представлены в виде простых матриц 2 × 2 . Эти матрицы называются матрицами Паули .

Операторы рождения и уничтожения могут быть построены для спиновых1/2объекты; они подчиняются тем же коммутационным соотношениям, что и другие операторы углового момента .

Связь с принципом неопределенности

Одним из следствий обобщенного принципа неопределенности является то, что операторы проекции спина (которые измеряют спин вдоль заданного направления, такого как x , y или z ) не могут быть измерены одновременно. Физически это означает, что неясно, вокруг какой оси вращается частица. Измерение z -компоненты спина уничтожает любую информацию о x- и y- компонентах, которая могла быть получена ранее.

Математическое описание

Спин-1/2частица характеризуется углового момента квантового числа для спина s из1/2. В решениях уравнения Шредингера угловой момент квантуется в соответствии с этим числом, так что полный спиновый угловой момент

Однако наблюдаемая тонкая структура, когда электрон наблюдается вдоль одной оси, такой как ось z , квантуется в терминах магнитного квантового числа , которое можно рассматривать как квантование векторной компоненты этого полного углового момента, которая может иметь только значения ±1/2ħ .

Обратите внимание, что эти значения углового момента являются функциями только приведенной постоянной Планка (углового момента любого фотона ) и не зависят от массы или заряда.

Сложная фаза

Математически квантово-механический спин не описывается вектором, как в классическом угловом моменте. Он описывается комплексным вектором с двумя компонентами, называемым спинором . Есть тонкие различия между поведением спиноров и векторов при поворотах координат , происходящие из поведения векторного пространства над сложным полем.

Когда спинор вращается на 360 ° (один полный оборот), он превращается в свое отрицательное, а затем после дальнейшего поворота на 360 ° он снова возвращается к своему исходному значению. Это связано с тем, что в квантовой теории состояние частицы или системы представлено сложной амплитудой вероятности ( волновой функцией ) ψ , и при измерении системы вероятность нахождения системы в состоянии ψ равна | ψ | 2 = ψ * ψ , абсолютный квадрат (квадрат абсолютного значения ) амплитуды. С математической точки зрения квантовое гильбертово пространство несет проективное представление группы вращений SO (3).

Предположим, что детектор, который можно вращать, измеряет частицу, в которой вероятность обнаружения некоторого состояния зависит от вращения детектора. Когда система поворачивается на 360 °, наблюдаемый выходной сигнал и физика остаются такими же, как и первоначально, но амплитуды изменяются для вращения.1/2частицы с коэффициентом -1 или фазовым сдвигом на половину 360 °. При вычислении вероятностей -1 возводится в квадрат, (-1) 2  = 1, поэтому предсказанная физика такая же, как и в исходном положении. Кроме того, в спин-1/2У частицы есть только два спиновых состояния, и амплитуды для обоих изменяются в один и тот же фактор, поэтому интерференционные эффекты идентичны, в отличие от случая для более высоких спинов. Комплексные амплитуды вероятностей - это что-то вроде теоретической конструкции, которую нельзя непосредственно наблюдать.

Если бы амплитуды вероятности повернулись на ту же величину, что и детектор, то они изменились бы с коэффициентом -1, когда оборудование было повернуто на 180 °, что при возведении в квадрат предсказывало бы тот же выходной сигнал, что и в начале, но эксперименты показывают, что это быть неправым. Если детектор повернуть на 180 °, результат при вращении1/2 частицы могут отличаться от тех, которыми они были бы, если бы не вращались, поэтому коэффициент половинный необходим, чтобы предсказания теории совпадали с экспериментами.

С точки зрения более прямых доказательств, физические эффекты разницы между вращением спина1/2частиц на 360 ° по сравнению с 720 ° экспериментально наблюдались в классических экспериментах по нейтронной интерферометрии. В частности, если пучок спин-ориентированного спинового1/2частицы разделяются, и только один из лучей вращается вокруг оси своего направления движения, а затем рекомбинируется с исходным лучом, наблюдаются различные интерференционные эффекты в зависимости от угла поворота. В случае поворота на 360 ° наблюдаются эффекты компенсации, тогда как в случае поворота на 720 ° балки усиливают друг друга.

NRQM (нерелятивистская квантовая механика)

Квантовое состояние из спин - 1 / 2 частиц может быть описано с помощью двухкомпонентного комплекснозначного вектора называется спинорным . Наблюдаемые состояния частицы затем найдены операторы спина S х , S у , и S г , и оператор полного спина S .

Наблюдаемые

Когда спиноры используются для описания квантовых состояний, три спиновых оператора ( S x , S y , S z , ) могут быть описаны матрицами 2 × 2, называемыми матрицами Паули, собственные значения которых равны ±час/2.

Например, оператор проекции спина S z влияет на измерение спина в направлении z .

Два собственных значения S z , ±час/2, то соответствуют следующим собственным спинорам:

Эти векторы образуют полный базис для гильбертова пространства , описывающего спин - 1 / 2 частицы. Таким образом, линейные комбинации этих двух состояний могут представлять все возможные состояния спина, в том числе в направлениях x и y .

К операторам лестницы относятся:

Поскольку S ± = S x ± i S y , то S x =1/2( S + + S - ) и S y =1/2 я( S + - S - ) . Таким образом:

Их нормированные собственные спины можно найти обычным способом. Для S x это:

Для S y это:

RQM (релятивистская квантовая механика)

В то время как NRQM определяет спин 1/2Имея 2 измерения в гильбертовом пространстве с динамикой, которая описывается в 3-мерном пространстве и времени, релятивистская квантовая механика определяет спин с 4-мя измерениями в гильбертовом пространстве и динамику, описываемую 4-мерным пространством-временем.

Наблюдаемые

Вследствие четырехмерной природы пространства-времени в теории относительности релятивистская квантовая механика использует матрицы 4 × 4 для описания спиновых операторов и наблюдаемых.

Спин как следствие объединения квантовой теории и специальной теории относительности

Когда физик Поль Дирак попытался модифицировать уравнение Шредингера, чтобы оно соответствовало теории относительности Эйнштейна , он обнаружил, что это возможно только путем включения матриц в получившееся уравнение Дирака , подразумевая, что волна должна иметь несколько компонентов, ведущих к вращению.

Смотрите также

Примечания

дальнейшее чтение

внешние ссылки

  • СМИ, связанные со Spin-½ на Викискладе?