Доклиническая визуализация - Preclinical imaging

Доклиническая визуализация - это визуализация живых животных для исследовательских целей, например для разработки лекарств. Методы визуализации уже давно имеют решающее значение для исследователя при наблюдении изменений на уровне органов, тканей, клеток или молекул у животных, реагирующих на физиологические изменения или изменения окружающей среды. Неинвазивные методы визуализации in vivo стали особенно важными для длительного изучения моделей на животных. Вообще говоря, эти системы визуализации можно разделить на в первую очередь морфологические / анатомические и в первую очередь молекулярные методы визуализации. Для анатомической визуализации обычно используются такие методы, как высокочастотный микро-ультразвук, магнитно-резонансная томография (МРТ) и компьютерная томография (КТ), в то время как оптическая визуализация ( флуоресценция и биолюминесценция ), позитронно-эмиссионная томография (ПЭТ) и однофотонная эмиссия вычисляются. томография (ОФЭКТ) обычно используется для молекулярной визуализации.

В наши дни многие производители предлагают мультимодальные системы, сочетающие в себе преимущества анатомических методов, таких как КТ и МРТ, с функциональной визуализацией ПЭТ и ОФЭКТ. Как и на клиническом рынке, распространенными комбинациями являются ОФЭКТ / КТ , ПЭТ / КТ и ПЭТ / МРТ .

Микро-ультразвук

Принцип: высокочастотный микро-ультразвук работает путем генерации безвредных звуковых волн от преобразователей в живые системы. Когда звуковые волны распространяются через ткань, они отражаются и улавливаются датчиком, а затем могут быть преобразованы в 2D- и 3D-изображения. Микро-ультразвук специально разработан для исследования мелких животных с частотами от 15 до 80 МГц.

Сильные стороны: Микро-ультразвук - это единственный способ визуализации в реальном времени как таковой, позволяющий регистрировать данные со скоростью до 1000 кадров в секунду. Это означает, что он не только более чем способен визуализировать кровоток in vivo , но и может использоваться для изучения высокоскоростных событий, таких как кровоток и сердечная функция у мышей. Микро-ультразвуковые системы портативны, не требуют специального оборудования и чрезвычайно рентабельны по сравнению с другими системами. Это также не сопряжено с риском искажения результатов из-за побочных эффектов радиации. В настоящее время возможно получение изображений размером до 30 мкм, что позволяет визуализировать крошечные сосуды в ангиогенезе рака . Для изображения капилляров это разрешение может быть увеличено до 3–5 мкм с помощью введения контрастных веществ для микропузырьков. Кроме того, микропузырьки могут быть конъюгированы с такими маркерами, как рецепторы активированного гликопротеина IIb / IIIa (GPIIb / IIIa) на тромбоцитах и ​​сгустках, интегрин α v β 3 , а также рецепторы фактора роста эндотелия сосудов (VEGFR), чтобы обеспечить молекулярную визуализацию. . Таким образом, он может использоваться в широком спектре приложений, которые могут быть достигнуты только с помощью двойных методов визуализации, таких как микро-МРТ / ПЭТ. Микро-ультразвуковые устройства обладают уникальными свойствами, относящимися к интерфейсу ультразвуковых исследований , где пользователи этих устройств получают доступ к необработанным данным, обычно недоступным в большинстве коммерческих ультразвуковых (микро и немикро) систем.

Слабые стороны: в отличие от микро-МРТ, микро-КТ, микро-ПЭТ и микро-ОФЭКТ, микро-ультразвук имеет ограниченную глубину проникновения. По мере увеличения частоты (как и разрешения) максимальная глубина изображения уменьшается. Обычно с помощью микро-ультразвука можно получить изображение ткани примерно на 3 см ниже кожи, и этого более чем достаточно для мелких животных, таких как мыши. Производительность ультразвуковой визуализации часто считается связанной с опытом и навыками оператора. Однако это быстро меняется, поскольку системы проектируются в удобные для пользователя устройства, дающие хорошо воспроизводимые результаты. Еще один потенциальный недостаток микро-ультразвука заключается в том, что целевые контрастные вещества для микропузырьков не могут диффундировать из сосудистой сети даже в опухоли. Однако на самом деле это может быть полезно для таких приложений, как перфузия опухоли и визуализация ангиогенеза.

Исследования рака: Достижения в области микро-ультразвука могут помочь в исследованиях рака множеством способов. Например, исследователи могут легко определить размер опухоли в двух и трех измерениях. Не только это, скорость и направление кровотока также можно наблюдать с помощью ультразвука. Кроме того, микро-ультразвук можно использовать для обнаружения и количественной оценки кардиотоксичности в ответ на противоопухолевую терапию, поскольку это единственный метод визуализации, который обеспечивает мгновенное получение изображения. Из-за того, что микро-ультразвук работает в режиме реального времени, он также может управлять микроинъекциями лекарств, стволовых клеток и т. Д. Мелким животным без хирургического вмешательства. Контрастные агенты могут быть введены животному для выполнения перфузии опухоли в реальном времени и целенаправленной молекулярной визуализации и количественной оценки биомаркеров . Недавно было даже показано, что микро-ультразвук является эффективным методом доставки генов.

Функциональная ультразвуковая визуализация головного мозга

В отличие от обычного микро-ультразвукового устройства с ограниченной чувствительностью к кровотоку, специализированные сверхбыстрые ультразвуковые сканеры в реальном времени с соответствующей последовательностью и обработкой, как было показано, способны фиксировать очень тонкие гемодинамические изменения в головном мозге мелких животных в режиме реального времени. Эти данные затем могут быть использованы для вывода нейрональной активности через нейрососудистую связь. Функциональное ультразвуковое изображение техника (ФУ) можно рассматривать как аналог функциональной магнитно - резонансной томографии (МРТ). fUS можно использовать для ангиографии мозга, картирования функциональной активности мозга, функциональной связи мозга от мышей к приматам, включая бодрствующих животных.

Микро-ПАТ

Принцип: Фотоакустическая томография (PAT) работает с естественным явлением, когда ткани термоупруго расширяются при стимуляции внешними электромагнитными волнами, такими как короткие лазерные импульсы. Это вызывает излучение ультразвуковых волн из этих тканей, которые затем могут быть захвачены ультразвуковым преобразователем. Термоупругое расширение и возникающая в результате ультразвуковая волна зависят от длины волны используемого света. PAT обеспечивает полную неинвазивность при визуализации животного. Это особенно важно при работе с моделями опухолей головного мозга, которые, как известно, сложно изучать.

Сильные стороны: Micro-PAT можно охарактеризовать как метод визуализации, применимый в большом количестве функций. Он сочетает в себе высокую чувствительность оптического изображения с высоким пространственным разрешением ультразвукового изображения. По этой причине он может не только отображать структуру, но и разделять различные типы тканей, изучать гемодинамические реакции и даже отслеживать молекулярные контрастные вещества, конъюгированные с конкретными биологическими молекулами. Кроме того, он неинвазивен и может быть выполнен быстро, что делает его идеальным для продольных исследований одного и того же животного.

Слабые стороны: поскольку micro-PAT все еще ограничен проникающей способностью света и звука, у него нет неограниченной глубины проникновения. Однако достаточно пройти через череп крысы и получить изображение на глубину до нескольких сантиметров, что более чем достаточно для большинства исследований на животных. Еще один недостаток микро-PAT заключается в том, что он полагается на оптическое поглощение ткани для получения обратной связи, и поэтому плохо васкуляризованные ткани, такие как простата, трудно визуализировать. На сегодняшний день на рынке представлены 3 коммерчески доступных системы, а именно VisualSonics, iThera и Endra, последняя из которых является единственной машиной, выполняющей получение реальных трехмерных изображений.

Исследования рака: изучению рака головного мозга в значительной степени препятствовало отсутствие удобных методов визуализации для изучения животных in vivo . Для этого часто требуется трепанация черепа в дополнение к часам анестезии, механической вентиляции и т. Д., Что значительно изменяет параметры эксперимента. По этой причине многие исследователи довольствовались тем, что приносили в жертву животных в разные моменты времени и изучали ткань мозга с помощью традиционных гистологических методов. По сравнению с продольным исследованием in vivo , для получения значимых результатов необходимо гораздо больше животных, и чувствительность всего эксперимента подвергается сомнению. Как указывалось ранее, проблема заключается не в нежелании исследователей использовать методы визуализации in vivo , а в отсутствии подходящих. Например, хотя оптические изображения обеспечивают быстрые функциональную информацию и окси- и дезоксите гемоглобин анализ, он требует краниотомии и предоставляет только несколько сот микрометров глубины проникновения. Кроме того, он сосредоточен на одной области мозга, в то время как исследования явно показали, что функции мозга взаимосвязаны в целом. С другой стороны, микро- фМРТ чрезвычайно дорога и предлагает мрачное разрешение и время получения изображения при сканировании всего мозга. Он также предоставляет мало информации о сосудистой сети. Было продемонстрировано, что Micro-PAT является значительным улучшением существующих устройств нейровизуализации in vivo . Он быстрый, неинвазивный и обеспечивает вывод большого количества данных. Micro-PAT может отображать головной мозг с высоким пространственным разрешением, обнаруживать контрастные вещества, нацеленные на молекулярную структуру, одновременно определять функциональные параметры, такие как SO2 и HbT, и предоставлять дополнительную информацию из функциональной и молекулярной визуализации, что было бы чрезвычайно полезно для количественной оценки опухоли и клеточно-ориентированной терапии. анализ.

Микро-МРТ

Система микро-МРТ от Magnex Scientific

Принцип: магнитно-резонансная томография (МРТ) использует ядерное магнитное выравнивание различных атомов внутри магнитного поля для создания изображений. Аппараты МРТ состоят из больших магнитов, которые создают магнитные поля вокруг объекта анализа. Эти магнитные поля заставляют атомы с ненулевым квантовым числом спина, такие как водород, гадолиний и марганец, выравниваться с магнитным диполем вдоль магнитного поля. Применяется радиочастотный (RF) сигнал, точно совпадающий с частотой ларморовской прецессии ядер-мишеней, нарушая выравнивание ядер с магнитным полем. После РЧ-импульса ядра расслабляются и излучают характерный РЧ-сигнал, который улавливается машиной. На основе этих данных компьютер сгенерирует изображение объекта на основе резонансных характеристик различных типов тканей.

Безкриогеновая доклиническая система МРТ 7T - это показывает серию MRS 7000

С 2012 года использование безкриогенных магнитов привело к значительному снижению требований к инфраструктуре и зависимости от доступности криогенных хладагентов, которые все труднее получить.

Достоинства: Преимущество микро-МРТ заключается в том, что она имеет хорошее пространственное разрешение, до 100 мкм и даже 25 мкм в очень сильных магнитных полях. Он также имеет отличное контрастное разрешение, чтобы различать нормальные и патологические ткани. Микро-МРТ можно использовать в самых разных областях, включая анатомическую, функциональную и молекулярную визуализацию. Кроме того, поскольку механизм микро-МРТ основан на магнитном поле, он намного безопаснее по сравнению с методами визуализации на основе излучения, такими как микро-КТ и микро-ПЭТ.

Слабые стороны: одним из самых больших недостатков микро-МРТ является его стоимость. В зависимости от магнитной силы (которая определяет разрешение) системы, используемые для визуализации животных с плотностью магнитного потока от 1,5 до 14 тесла, варьируются от 1 до 6 миллионов долларов, при этом стоимость большинства систем составляет около 2 миллионов долларов. Кроме того, время получения изображения чрезвычайно велико и составляет минуты и даже часы. Это может негативно повлиять на животных, которые находятся под наркозом в течение длительного времени. Кроме того, микро-МРТ обычно делает снимок объекта во времени, и поэтому он не может хорошо изучить кровоток и другие процессы в реальном времени. Даже с учетом последних достижений в области высокопроизводительной функциональной микро-МРТ, для достижения пиковой интенсивности сигнала все еще требуется примерно 10-15 секунд задержки, что затрудняет доступ к важной информации, такой как количественная оценка скорости кровотока.

Исследования рака: Микро-МРТ часто используется для визуализации мозга из-за его способности неинвазивно проникать в череп. Благодаря высокому разрешению микро-МРТ также может обнаруживать ранние опухоли небольшого размера. Парамагнитные наночастицы, связанные с антителами, также можно использовать для увеличения разрешения и визуализации молекулярной экспрессии в системе.

Исследования инсульта и черепно-мозговой травмы: Микро-МРТ часто используется для анатомической визуализации при исследованиях инсульта и черепно-мозговой травмы. Молекулярная визуализация - это новая область исследований.

Микро-КТ

Система Micro-CT
Объемная визуализация реконструированной компьютерной томографии черепа мыши

Принцип: компьютерная томография (КТ) работает с помощью рентгеновских лучей, которые испускаются сфокусированным источником излучения, который вращается вокруг испытуемого, помещенного в середину КТ-сканера. Рентгеновское излучение ослабляется с разной скоростью в зависимости от плотности ткани, через которую он проходит, а затем улавливается датчиками на противоположном конце КТ-сканера от источника излучения. В отличие от традиционного 2D-рентгеновского излучения, поскольку источник излучения в компьютерном томографе вращается вокруг животного, серия 2D-изображений может быть затем объединена с помощью компьютера в 3D-структуры.

Достоинства: Micro-CT может иметь отличное пространственное разрешение, которое может достигать 6 мкм в сочетании с контрастными веществами. Однако доза облучения, необходимая для достижения этого разрешения, смертельна для мелких животных, а пространственное разрешение 50 мкм лучше отражает пределы возможностей микро-КТ. Это также неплохо с точки зрения времени получения изображения, которое для мелких животных может составлять несколько минут. Кроме того, микро-КТ отлично подходит для визуализации костей.

Слабые стороны: одним из основных недостатков микро-КТ является дозировка облучения подопытных животных. Хотя это, как правило, не смертельно, радиация достаточно высока, чтобы повлиять на иммунную систему и другие биологические пути, что в конечном итоге может изменить результаты экспериментов. Кроме того, облучение может влиять на размер опухоли в моделях рака, так как оно имитирует лучевую терапию , и, следовательно, могут потребоваться дополнительные контрольные группы для учета этой потенциальной мешающей переменной . Кроме того, контрастное разрешение микро-КТ довольно низкое, и поэтому оно не подходит для различения схожих типов тканей, таких как нормальные и больные ткани.

Исследования рака: Микро-КТ чаще всего используется в качестве системы анатомической визуализации при исследованиях на животных из-за преимуществ, упомянутых ранее. Также можно вводить контрастные вещества для исследования кровотока. Однако контрастные вещества для микро-КТ, такие как йод, трудно конъюгировать с молекулярными мишенями1, и поэтому он редко используется в методах молекулярной визуализации. Таким образом, микро-КТ часто сочетается с микро-ПЭТ / ОФЭКТ для анатомической и молекулярной визуализации в исследованиях.

Микро-ПЭТ

Принцип: позитронно-эмиссионная томография (ПЭТ) позволяет получать изображения живых систем путем регистрации высокоэнергетических γ-лучей, исходящих изнутри объекта. Источником излучения являются биологические молекулы, излучающие позитроны, такие как 18F-FDG (флудезоксиглюкоза), которые вводятся испытуемому. Когда радиоизотопы распадаются, они испускают позитроны, которые аннигилируют с электронами, которые естественным образом находятся в организме. Это производит 2 γ-кванта на расстоянии ~ 180 ° друг от друга, которые улавливаются датчиками на противоположных концах машины для производства ПЭТ. Это позволяет локализовать отдельные выбросы в организме, а набор данных реконструируется для получения изображений.

Сильные стороны: Сила микро-ПЭТ в том, что, поскольку источник излучения находится внутри животного, он имеет практически неограниченную глубину визуализации. Время сбора данных также достаточно быстрое, обычно около минут. Поскольку разные ткани имеют разную скорость поглощения молекулярных зондов, меченных радиоактивными изотопами, микро-ПЭТ также чрезвычайно чувствителен к молекулярным деталям, и поэтому для визуализации необходимы только нанограммы молекулярных зондов.

Слабые стороны: радиоактивные изотопы, используемые в микро-ПЭТ, имеют очень короткий период полураспада (110 мин для 18F-ФДГ). Для производства этих изотопов необходимы циклотроны в радиохимических лабораториях в непосредственной близости от машин для микро-ПЭТ. Кроме того, облучение может влиять на размер опухоли в моделях рака, так как оно имитирует лучевую терапию, и, следовательно, могут потребоваться дополнительные контрольные группы для учета этой потенциальной мешающей переменной. Микро-ПЭТ также страдает низким пространственным разрешением около 1 мм. Для проведения всестороннего исследования, включающего не только молекулярную визуализацию, но и анатомическую визуализацию, необходимо использовать микро-ПЭТ в сочетании с микро-МРТ или микро-КТ, что еще больше снижает доступность для многих исследователей из-за высокой стоимости и специализированных удобства.

Исследования рака: ПЭТ обычно широко используется в клинической онкологии, поэтому результаты исследований на мелких животных легко переводятся. Из-за того, как 18F-FDG метаболизируется тканями, он приводит к интенсивной радиоактивной метке при большинстве видов рака, таких как опухоли мозга и печени. Почти любое биологическое соединение можно проследить с помощью микро-ПЭТ, если оно может быть конъюгировано с радиоизотопом, что делает его пригодным для изучения новых путей.

Микро-ОФЭКТ

ОФЭКТ-сканирование мыши с высоким разрешением 99m Tc-MDP: анимированное изображение вращающихся проекций максимальной интенсивности.

Принцип: Подобно ПЭТ, однофотонная эмиссионная компьютерная томография (ОФЭКТ) также отображает живые системы с помощью γ-лучей, исходящих изнутри объекта. В отличие от ПЭТ, радиоизотопы, используемые в ОФЭКТ (например, технеций-99m ), испускают γ-лучи напрямую, а не от событий аннигиляции позитрона и электрона. Затем эти лучи улавливаются γ-камерой, вращающейся вокруг объекта, и затем преобразуются в изображения.

Сильные стороны: Преимущество этого подхода заключается в том, что ядерные изотопы намного более доступны, дешевле и имеют более длительный период полураспада по сравнению с изотопами микро-ПЭТ. Как и микро-ПЭТ, микро-ОФЭКТ также имеет очень хорошую чувствительность, и требуются только нанограммы молекулярных зондов. Кроме того, за счет использования радиоизотопов разной энергии, конъюгированных с разными молекулярными мишенями, микро-ОФЭКТ имеет преимущество перед микро-ПЭТ в том, что он может отображать несколько молекулярных событий одновременно. В то же время, в отличие от микро-ПЭТ, микро-ОФЭКТ может достичь очень высокого пространственного разрешения, исследуя принцип коллимации точечного отверстия (Бекман и др.). В этом подходе, помещая объект (например, грызуна) близко к апертуре точечного отверстия, можно добиться большого увеличения его проекции на поверхность детектора и эффективно компенсировать собственное разрешение кристалла.

Слабые стороны: Микро-ОФЭКТ все еще имеет значительное излучение, которое может повлиять на физиологические и иммунологические механизмы у мелких животных. Кроме того, облучение может влиять на размер опухоли в моделях рака, так как оно имитирует лучевую терапию , и поэтому могут потребоваться дополнительные контрольные группы для учета этой потенциальной мешающей переменной . Микро-ОФЭКТ также может быть на два порядка менее чувствительным, чем ПЭТ. Кроме того, для маркировки соединений изотопами микро-ОФЭКТ требуются хелатирующие молярности, которые могут изменять их биохимические или физические свойства.

Исследования рака: Micro-SPECT часто используется в исследованиях рака для молекулярной визуализации раковых лигандов. Его также можно использовать для изображения мозга из-за его проникающей способности. Поскольку новые радиоизотопы включают наночастицы, такие как наночастицы оксида железа с меткой 99mTC, в будущем они потенциально могут быть объединены с системами доставки лекарств.

Следующие системы ОФЭКТ для мелких животных были разработаны в различных группах и коммерчески доступны:

Ссылка Марка Описание системы Радиус вращения (см) Разрешение (мм) Чувствительность (имп / с / МБк)
Sajedi et al.,

2014,

HiReSPECT Пиксельные кристаллы CsI (Tl),

Коллиматор с параллельными отверстиями LEHR, визуализация крыс и мышей

25 1,7 36
Magota et al.,

2011,

Inveon Кристаллы NaI (Tl),

Коллиматоры с одиночным отверстием 0,5 мм

25 0,84 35,3
ван дер Хаве и др.,

2009, Иващенко и др., 2015,

U-SPECT II три неподвижных кристалла NaI (Tl),

75 отверстий в 5 кольцах, без мультиплексирования

NA 0,25 лучшее 340 (0,25 мм)

13000 лучших

Дель Герра и др.,

2007 г.,

X-SPECT два вращающихся детектора NaI (Tl),

различные отверстия

NA 0,62 лучшее 855

Комбинированный ПЭТ-МР

На изображении показана мультимодальная система 3T доклинической МРТ с прикрепляемым ПЭТ для последовательной визуализации.

Принцип: Технология ПЭТ-МРТ для визуализации мелких животных представляет собой крупный прорыв в технологии высокопроизводительной функциональной визуализации, особенно в сочетании с системой МРТ, не содержащей криогенов. Система ПЭТ-МРТ обеспечивает превосходный контраст мягких тканей и возможности молекулярной визуализации для отличной визуализации, количественной оценки и трансляционных исследований. Доклиническая система ПЭТ-МРТ может использоваться для одновременной мультимодальной визуализации. Использование безкриогенных магнитов также значительно снижает требования к инфраструктуре и снижает зависимость от доступности криогенных хладагентов, которые все труднее получить.

Сильные стороны: исследователи могут использовать автономную операцию ПЭТ или МРТ или использовать мультимодальную визуализацию. Методы ПЭТ и МРТ могут выполняться либо независимо (с использованием систем ПЭТ или МРТ в качестве автономных устройств), либо последовательно (с прикрепляемым ПЭТ) перед отверстием системы МРТ или одновременно (с ПЭТ вставлен внутрь магнита МРТ). Это позволяет гораздо быстрее получить более точную картину. При одновременном использовании систем ПЭТ и МРТ рабочий процесс в лаборатории может быть увеличен. Система MR-PET от MR Solutions включает в себя новейшую технологию кремниевых фотоумножителей (SiPM), которая значительно уменьшает размер системы и позволяет избежать проблем, связанных с использованием фотоумножителей или других устаревших типов детекторов в магнитном поле МРТ. Рабочие характеристики SiPM аналогичны обычным PMT, но с практическими преимуществами твердотельной технологии.

Слабые стороны: поскольку это комбинация систем визуализации, недостатки, связанные с каждым методом визуализации, в значительной степени компенсируются другим. При последовательной ПЭТ-МРТ оператору необходимо выделить немного времени, чтобы переместить объект между позицией получения ПЭТ и МРТ. Это исключается при одновременной ПЭТ-МРТ. Однако в последовательных системах ПЭТ-МР само кольцо ПЭТ можно легко закрепить или снять и переносить из одного помещения в другое для независимого использования. Исследователю требуются достаточные знания для интерпретации изображений и данных из двух разных систем и для этого потребуется обучение.

Исследования рака: сочетание МРТ и ПЭТ намного эффективнее по времени, чем использование одного метода за раз. Изображения из двух модальностей также могут быть зарегистрированы гораздо более точно, поскольку временная задержка между модальностями ограничена для последовательных систем ПЭТ-МРТ и практически отсутствует для одновременных систем. Это означает, что возможность грубого перемещения объекта между съемками практически отсутствует.

Комбинированная ОФЭКТ-МРТ

Система доклинической визуализации с прикрепляемой ОФЭКТ

Принцип: новый ОФЭКТ-МРТ для визуализации мелких животных основан на технологии множественных отверстий, обеспечивающей высокое разрешение и высокую чувствительность. В сочетании с безкриогеновой МРТ комбинированная технология ОФЭКТ-МР значительно увеличивает рабочий процесс в исследовательских лабораториях, снижая при этом требования к лабораторной инфраструктуре и уязвимость для криогенных источников.

Сильные стороны: исследовательским центрам больше не нужно покупать несколько систем, и они могут выбирать между различными конфигурациями визуализации системы. Каждое оборудование для ОФЭКТ или МРТ может использоваться как отдельное устройство на столе, или последовательная визуализация может выполняться путем прикрепления модуля ОФЭКТ к системе МРТ. Животное автоматически переводится из одной модальности в другую по той же оси. Вставив модуль ОФЭКТ внутрь магнита МРТ, возможно одновременное получение данных ОФЭКТ и МРТ. Рабочий процесс лаборатории может быть увеличен за счет получения нескольких модальностей одного и того же предмета за один сеанс или за счет раздельного использования систем ОФЭКТ и МРТ с одновременной визуализацией разных предметов. ОФЭКТ-МРТ доступна в различных конфигурациях с разным трансаксиальным полем обзора, что позволяет получать изображения от мышей к крысам.

Слабые стороны: поскольку это комбинация систем визуализации, недостатки, связанные с тем или иным способом визуализации, больше не применимы. При последовательной ОФЭКТ-МРТ оператору необходимо дать немного времени, чтобы переместить объект между позициями получения ОФЭКТ и МРТ. Это исключается при одновременной ОФЭКТ-МРТ. Тем не менее, для последовательной ОФЭКТ-МРТ, когда модуль ОФЭКТ закреплен, его легко прикреплять или снимать и переносить из одного помещения в другое. Исследователь должен обладать достаточными знаниями для интерпретации двух различных выходных данных системы, и для этого потребуется обучение.

Исследования рака: сочетание МРТ, которое используется как неинвазивный метод визуализации, и ОФЭКТ дает результаты намного быстрее, чем при использовании одного метода за раз. Изображения из двух модальностей также могут быть зарегистрированы гораздо более точно, поскольку временная задержка между модальностями ограничена для последовательных систем SPECT-MR и практически отсутствует для одновременных систем. Это означает, что возможность грубого перемещения объекта между съемками практически отсутствует. При раздельной, независимой работе систем МРТ и ОФЭКТ рабочий процесс может быть легко увеличен.

Оптическое изображение

Принцип: оптическое отображение делится на флуоресценцию и биолюминесценцию .

  • Флуоресцентная визуализация работает на основе флуорохромов внутри объекта, которые возбуждаются внешним источником света и в ответ излучают свет с другой длиной волны. Традиционные флуорохромы включают GFP, RFP и многие их мутанты. Однако серьезные проблемы возникают in vivo из-за автофлуоресценции ткани на длинах волн ниже 700 нм. Это привело к переходу на красители в ближнем инфракрасном диапазоне и флуоресцентные белки в инфракрасном диапазоне (700–800 нм), которые продемонстрировали гораздо большую применимость для визуализации in vivo из-за гораздо более низкой автофлуоресценции ткани и более глубокого проникновения в ткань на этих длинах волн.
  • Визуализация биолюминесценции, с другой стороны, основана на свете, генерируемом хемилюминесцентными ферментативными реакциями. Как при флуоресцентной, так и при биолюминесцентной визуализации световые сигналы улавливаются камерами устройств с заряженной связью (CCD), охлаждаемыми до -150 ° C, что делает их чрезвычайно светочувствительными. В случаях, когда производится больше света, для визуализации изображения можно использовать менее чувствительные камеры или даже невооруженный глаз.

Достоинства: получение оптических изображений выполняется быстро и легко, а также относительно недорого по сравнению со многими другими методами визуализации. Кроме того, он чрезвычайно чувствителен, так как способен обнаруживать молекулярные события в диапазоне 10–15 M. Кроме того, поскольку для получения изображений биолюминесценции не требуется возбуждение репортера, а, скорее, требуется сама реакция катализа, это свидетельствует о биологическом / молекулярном процессе и почти не имеет фонового шума.

Слабые стороны: основным недостатком оптических изображений является глубина проникновения, которая в случае видимых красителей составляет всего несколько миллиметров. Флуоресценция в ближнем инфракрасном диапазоне позволила достичь глубины в несколько сантиметров. Поскольку свет в инфракрасной области имеет лучшую глубину проникновения, многочисленные флуорохромы были специально разработаны для оптимального возбуждения в этой области. Оптическая визуализация, флуоресценция имеет разрешение, ограниченное дифракцией света ~ 270 нм, а биолюминесценция имеет разрешение ~ 1–10 мм, в зависимости от времени получения, по сравнению с МРТ на 100 мкм и микро-ультразвуком на 30 мкм.

Исследования рака: из-за малой глубины проникновения оптическая визуализация обычно используется только для молекулярных целей, а не для анатомической визуализации. Из-за малой глубины проникновения в видимом диапазоне длин волн он используется для подкожных моделей рака, однако флуоресценция в ближнем инфракрасном диапазоне сделала возможным создание ортотопических моделей. Часто исследование специфической экспрессии белка при раке и влияние лекарств на эти проявления изучаются in vivo с использованием генно-инженерных репортерных генов, излучающих свет. Это также позволяет идентифицировать механизмы тканевого избирательного нацеливания на гены при раке и за его пределами.

Комбинированная ПЭТ-оптическая визуализация, флуоресценция

Многоцветная флуоресцентная визуализация живых клеток HeLa с мечеными митохондриями (красный), актином (зеленый) и ядрами (синий). Каждая ячейка имеет размер ~ 10 мкм, и изображения показывают, что оптическое изображение допускает разрешение ≤1 мкм.

Принцип: химический состав диоксаборолана позволяет маркировать антитела или эритроциты радиоактивным фторидом ( 18 F ) , что позволяет проводить позитронно-эмиссионную томографию (ПЭТ) и флуоресцентную визуализацию рака и кровоизлияний , соответственно. Генетическая, излучающая позитрон и флуоресцентная репортерная система человеческого происхождения (HD-GPF) использует человеческий белок, PSMA и неиммуногенный, и небольшую молекулу, которая излучает позитроны (связанный с бором 18 F ) и флуоресцирует для двойной модальности. ПЭТ и флюоресцентная визуализация клеток с модифицированным геномом, например раковых , CRISPR / Cas9 или CAR T -клеток, у всей мыши. Нобелевский лауреат 2008 года Роджер Цзянь предсказал, что сочетание этих методов визуализации компенсирует недостатки отдельных методов визуализации.

Сильные стороны: Сочетает в себе сильные стороны ПЭТ и оптической визуализации , флуоресценции . ПЭТ позволяет анатомическую визуализацию для расположения меченых клеток в целых животных или людей , потому что радиоактивное , 18 F , находится в пределах животного или человека на почти неограниченную глубину проникновения. 18 F имеет период полураспада 110 минут и ограничивает радиоактивное воздействие на животное или человека. Оптическая визуализация обеспечивает более высокое разрешение с субклеточным разрешением ~ 270 нм или пределом дифракции света, что позволяет визуализировать отдельные клетки и локализовать клеточное местоположение на клеточной мембране, эндосомах, цитоплазме или ядрах (см. Рисунок многоцветного изображения). HeLa клетки). Этот метод позволяет маркировать небольшие молекулы, антитела , клетки ( рак и эритроциты ), спинномозговую жидкость , кровоизлияния , удаление рака простаты и измененные геномом клетки, экспрессирующие генетически кодируемый человеческий белок, PSMA , для визуализации CRISPR / Cas9 edited и CAR T- клетки .

Слабые стороны: сочетание ПЭТ и оптической визуализации позволяет использовать два агента визуализации, которые компенсируют слабость других. 18 F имеет период полураспада 110 минут, и сигнал ПЭТ не является постоянным. Флуоресцентные небольшие молекулы обеспечивают постоянный сигнал при хранении в темноте и без фотообесцвечивания . В настоящее время не существует ни одного прибора, который может отображать сигнал ПЭТ и изображение флуоресценции с субклеточным разрешением (см. Рисунок многоцветных клеток HeLa). Для получения изображения ПЭТ, флуоресценции всего органа и флуоресценции отдельных клеток с субклеточным разрешением требуется несколько инструментов.

использованная литература