Ограничение (математика) - Restriction (mathematics)

Функция x 2 с областью определения R не имеет обратной функции . Если мы ограничим x 2 неотрицательными действительными числами , тогда у него будет обратная функция, известная как квадратный корень из x .

В математике , то ограничение из функции является новой функцией, обозначаются или , полученная путем выбора меньшего домена А для исходной функции .

Формальное определение

Пусть функция от множества Е к множеству F . Если множество является подмножеством из Е , то ограничение , чтобы функция

задано f | ( Х ) = е ( х ) для й в А . Неформально ограничение f на A - это та же функция, что и f , но определено только на .

Если функция F будет рассматривать как отношение на декартово произведении , то сужение F на А может быть представлено его графике , где пары представляют собой упорядоченные пары в графе G .

Примеры

  1. Ограничение неинъективной функции на область является инъекцией .
  2. Факториал функция является ограничением гаммы - функции на положительные целые числа, с аргументом сдвинут на один:

Свойства ограничений

  • Ограничение функции всем ее доменом возвращает исходную функцию, т . Е ..
  • Дважды ограничить функцию - это то же самое, что ограничить ее один раз, т.е. если , то .
  • Ограничение тождественной функции на множестве X к подгруппе А из X является только отображение включения из A в X .
  • Ограничение непрерывной функции непрерывно.

Приложения

Обратные функции

Чтобы функция имела инверсию, она должна быть взаимно однозначной . Если функция F не является взаимно однозначным, то можно определить частичный обратный из F , ограничивая область. Например, функция

определенное в целом не взаимно однозначно, так как x 2 = (- x ) 2 для любого x в . Однако функция становится взаимно однозначной, если мы ограничиваемся областью , и в этом случае

(Если вместо этого мы ограничимся областью , то обратная величина будет отрицательной величиной квадратного корня из y .) В качестве альтернативы, нет необходимости ограничивать область, если мы позволяем обратной функции быть многозначной .

Операторы выбора

В реляционной алгебре , А выбор (иногда называемое ограничение , чтобы избежать путаницы с SQL использованием «S из SELECT) является унарной операция записывается как или где:

  • и являются именами атрибутов,
  • - бинарная операция в множестве ,
  • постоянная величина,
  • это отношение .

Адресные выбирает все те кортежи , в течение которого существует между и в атрибуте.

Выбор выбирает все те кортежи, для которых удерживается значение между атрибутом и значением .

Таким образом, оператор выбора ограничивается подмножеством всей базы данных.

Лемма о склеивании

Лемма о склейке - результат топологии, которая связывает непрерывность функции с непрерывностью ее ограничений на подмножества.

Позвольте быть два замкнутых подмножества (или два открытых подмножества) топологического пространства такие, что , и пусть также быть топологическим пространством. Если является непрерывным при ограничении обоими и , то является непрерывным.

Этот результат позволяет взять две непрерывные функции, определенные на замкнутых (или открытых) подмножествах топологического пространства, и создать новую.

Шкивы

Связки предоставляют способ обобщения ограничений на объекты помимо функций.

В теории пучков , сопоставляется объект в категории для каждого открытого множества U в виде топологического пространства , и требует, чтобы объекты удовлетворяют определенные условия. Наиболее важным условием является наличие ограничивающих морфизмов между каждой парой объектов, связанных с вложенными открытыми множествами; то есть, если , то существует морфизм res V , U  : F ( U ) → F ( V ), удовлетворяющий следующим свойствам, имитирующим ограничение функции:

  • Для любого открытого множества U в X морфизм ограничения res U , U  : F ( U ) → F ( U ) является тождественным морфизмом на F ( U ).
  • Если мы имеем три открытые множества W V U , то композитные разрешения Ш , V ∘ Рез V , U = Рез W , U .
  • (Локальность) Если ( U i ) - открытое покрытие открытого множества U , и если s , t F ( U ) таковы, что s | U i = t | U i для каждого множества U i покрытия, тогда s = t ; и
  • (Склейка) Если ( U i ) - открытое покрытие открытого множества U , и если для каждого i задано сечение s i F ( U i ) такое, что для каждой пары U i , U j покрытия задает ограничения s i и s j согласуются с перекрытиями: s i | U i U j = s j | U i U j , то существует сечение s F ( U ) такое, что s | U i = s i для каждого i .

Совокупность всех таких объектов называется связкой . Если выполняются только первые два свойства, это предварительная связка .

Левое и правое ограничение

В более общем смысле , ограничение (или ограничение домена или лево-ограничение )  ◁  R из бинарного отношения R между Е и F может быть определена как отношение , обладающее домена А , областью значений Р и графа G ( R ) = {( х ,  y ) ∈ G ( R ) | xA }  . Аналогичным образом можно определить правый ограничение или ограничение диапазона RB . В самом деле, можно определить ограничение на n- мерные отношения, а также на подмножества, понимаемые как отношения, такие как E × F для бинарных отношений. Эти случаи не укладываются в схему связок .

Анти-ограничение

Антиограничение области (или вычитание области ) функции или бинарного отношения R (с областью E и codomain F ) набором A может быть определено как ( E  \  A ) ◁ R ; она удаляет все элементы А из области Е . Это иногда обозначается A  ⩤  R . Точно так же антиограничение диапазона (или вычитание диапазона ) функции или бинарного отношения R набором B определяется как R ▷ ( F  \  B ) ; она удаляет все элементы B из кообласти F . Это иногда обозначают R  ⩥  B .

Смотрите также

Рекомендации