Сияние - Radiance

В радиометрии , сияние является поток излучения , испускаемый, отражение, передаваемый или принимаемый по заданной поверхности, на единицу телесного угла на единицу площади проекции. Спектральная яркость - это яркость поверхности на единицу частоты или длины волны , в зависимости от того , берется ли спектр как функция частоты или длины волны. Это направленные величины. Единица СИ сияния является ватт на стерадиан на квадратный метр ( Вт · ср -1 · м -2 ), в то время как спектрального излучения в частоте на ватт на стерадиан за квадратный метр в герцах ( Вт · ср -1 · м −2 · Гц −1 ), а спектральная яркость в длине волны - это ватт на стерадиан на квадратный метр на метр ( Вт · ср −1 · м −3 ) - обычно ватт на стерадиан на квадратный метр на нанометр ( Вт · ср −1 · м −2 · нм −1 ). Microflick также используются для измерения спектральной яркости излучения в некоторых областях. Сияние используется для характеристики диффузного излучения и отражения от электромагнитного излучения , или количественно излучения нейтрино и других частиц. Исторически яркость называется «интенсивностью», а спектральная яркость - «удельной интенсивностью». Эта номенклатура до сих пор используется во многих областях. Особенно он преобладает в теплообмене , астрофизике и астрономии . «Интенсивность» имеет много других значений в физике , наиболее распространенным из которых является мощность на единицу площади .

Описание

Сияние полезно, потому что оно указывает, какая часть мощности, излучаемой, отраженной, передаваемой или принимаемой поверхностью, будет принята оптической системой, смотрящей на эту поверхность под заданным углом обзора. В данном случае интересующим телесным углом является телесный угол, образованный входным зрачком оптической системы . Поскольку глаз представляет собой оптическую систему, его яркость и его родственная яркость являются хорошими индикаторами того, насколько ярким будет выглядеть объект. По этой причине сияние и яркость иногда называют «яркостью». Такое использование сейчас не рекомендуется ( обсуждение см. В статье « Яркость» ). Нестандартное использование термина «яркость» для «сияния» сохраняется в некоторых областях, особенно в лазерной физике .

Яркость, деленная на квадрат показателя преломления, инвариантна в геометрической оптике . Это означает, что для идеальной оптической системы в воздухе яркость на выходе такая же, как на входе. Иногда это называют сохранением сияния . Для реальных пассивных оптических систем выходная яркость не более чем равна входной, если только показатель преломления не изменится. Например, если вы формируете уменьшенное изображение с помощью линзы, оптическая сила концентрируется в меньшей области, поэтому освещенность на изображении выше. Однако свет в плоскости изображения заполняет больший телесный угол, поэтому яркость получается такой же, если на линзе нет потерь.

Спектральная яркость выражает яркость как функцию частоты или длины волны. Яркость - это интеграл спектральной яркости по всем частотам или длинам волн. Для излучения, испускаемого поверхностью идеального черного тела при данной температуре, спектральная яркость регулируется законом Планка , в то время как интеграл его яркости по полусфере, в которую излучается его поверхность, определяется законом Стефана – Больцмана . Его поверхность ламбертова , так что его яркость однородна по углу обзора и представляет собой просто интеграл Стефана – Больцмана, деленный на π. Этот коэффициент получается из телесного угла 2π стерадиана полусферы, уменьшенного интегрированием по косинусу зенитного угла .

Математические определения

Сияние

Излучение из поверхности , обозначается л е, Ω ( «е» для «энергичных», чтобы избежать путаницы с фотометрических величин, а «П» , чтобы указать , что это направленное количество), определяется как

куда

В общем, L e, Ω является функцией направления взгляда, зависящим от θ через cos θ и азимутального угла через ∂Φ e / ∂Ω . Для специального случая ламбертовской поверхности , 2 Φ е / (дП ∂ ) пропорциональна соз θ , а л е, Ω изотропно (независимо от направления наблюдения).

При вычислении яркости, излучаемой источником, A относится к площади на поверхности источника, а Ω - к телесному углу, в который излучается свет. При вычислении яркости, полученной детектором, A относится к площади на поверхности детектора, а Ω - к телесному углу, образуемому источником, если смотреть с этого детектора. Когда яркость сохраняется, как обсуждалось выше, яркость, излучаемая источником, такая же, как и получаемая детектором, наблюдающим за ним.

Спектральное сияние

Спектральные яркости излучение в частоте о наличии поверхности , обозначаются л е, Ω, ν , определяются как

где ν - частота.

Спектральный яркости излучения в длине волны в виде поверхности , обозначается л е, Ω, λ , определяется как

где λ - длина волны.

Сохранение основного сияния

Сияние поверхности связано с étendue соотношением

куда

Поскольку свет проходит через идеальную оптическую систему, сохраняется как внешний поток, так и лучистый поток. Таким образом, основное сияние определяется

также сохраняется. В реальных системах интенсивность излучения может увеличиваться (например, из-за рассеяния) или лучистый поток может уменьшаться (например, из-за поглощения), и, следовательно, базовая яркость может уменьшаться. Однако étendue не может уменьшаться, и лучистый поток не может увеличиваться, и, следовательно, базовая яркость не может увеличиваться.

Блоки радиометрии СИ

Количество Ед. изм Измерение Примечания
Имя Условное обозначение Имя Условное обозначение Условное обозначение
Энергия излучения Q e джоуль J ML 2T −2 Энергия электромагнитного излучения.
Плотность лучистой энергии ж е джоуль на кубический метр Дж / м 3 ML −1T −2 Лучистая энергия на единицу объема.
Сияющий поток Φ e ватт W = Дж / с ML 2T −3 Излучаемая, отраженная, переданная или полученная энергия излучения в единицу времени. Иногда это также называют «сияющей силой».
Спектральный поток Φ e, ν ватт на герц Вт / Гц ML 2T −2 Лучистый поток на единицу частоты или длины волны. Последний обычно измеряется в Вт⋅нм -1 .
Ф е, λ ватт на метр Вт / м MLT −3
Сияющая интенсивность I e, Ω ватт на стерадиан Вт / ср ML 2T −3 Излучаемый, отраженный, передаваемый или принимаемый поток излучения на единицу телесного угла. Это направленная величина.
Спектральная интенсивность I e, Ω, ν ватт на стерадиан на герц W⋅sr −1 ⋅Hz −1 ML 2T −2 Интенсивность излучения на единицу частоты или длины волны. Последний обычно измеряется в Вт⋅ср −1 нм −1 . Это направленная величина.
I e, Ω, λ ватт на стерадиан на метр W⋅sr −1 ⋅m −1 MLT −3
Сияние L e, Ω ватт на стерадиан на квадратный метр W⋅sr −1 ⋅m −2 MT −3 Лучистый поток, излучаемый, отраженный, передаваемый или принимаемый поверхностью , на единицу телесного угла на единицу площади проекции. Это направленная величина. Иногда это также неправильно называют «интенсивностью».
Спектральное сияние L e, Ω, ν ватт на стерадиан на квадратный метр на герц W⋅sr −1 ⋅m −2 ⋅Hz −1 MT −2 Яркость поверхности на единицу частоты или длины волны. Последний обычно измеряется в Вт⋅sr −1 m −2 nm −1 . Это направленная величина. Иногда это также неправильно называют «спектральной интенсивностью».
L e, Ω, λ ватт на стерадиан на квадратный метр, на метр W⋅sr −1 ⋅m −3 ML −1T −3
Облучение
Плотность потока
E e ватт на квадратный метр Вт / м 2 MT −3 Лучистый поток , полученный с помощью поверхности на единицу площади. Иногда это также неправильно называют «интенсивностью».
Спектральная освещенность
Спектральная плотность потока
E e, ν ватт на квадратный метр на герц Вт⋅м −2 ⋅Гц −1 MT −2 Освещенность поверхности на единицу частоты или длины волны. Иногда это также ошибочно называют «спектральной интенсивностью». Единицы измерения спектральной плотности потока, не относящиеся к системе СИ, включают янский (1 Ян = 10 −26  Вт⋅м −2 Гц −1 ) и единицу солнечного потока (1 sfu = 10 −22  Вт⋅м −2 ⋅Гц −1 = 10 4).  Jy).
E e, λ ватт на квадратный метр, на метр Вт / м 3 ML −1T −3
Лучистость J e ватт на квадратный метр Вт / м 2 MT −3 Лучистый поток, покидающий (испускаемый, отраженный и проходящий) поверхность на единицу площади. Иногда это также ошибочно называют «интенсивностью».
Спектральное излучение J e, ν ватт на квадратный метр на герц Вт⋅м −2 ⋅Гц −1 MT −2 Сияние поверхности на единицу частоты или длины волны. Последний обычно измеряется в Вт⋅м −2 нм −1 . Иногда это также неправильно называют «спектральной интенсивностью».
J e, λ ватт на квадратный метр, на метр Вт / м 3 ML −1T −3
Сияющая выходность М е ватт на квадратный метр Вт / м 2 MT −3 Лучистый поток , излучаемый на поверхности на единицу площади. Это излучаемый компонент излучения. «Излучение излучения» - старый термин для обозначения этой величины. Иногда это также неправильно называют «интенсивностью».
Спектральная выходность М е, ν ватт на квадратный метр на герц Вт⋅м −2 ⋅Гц −1 MT −2 Излучение поверхности на единицу частоты или длины волны. Последний обычно измеряется в Вт⋅м −2 нм −1 . «Спектральный коэффициент излучения» - старый термин для обозначения этой величины. Иногда это также неправильно называют «спектральной интенсивностью».
M e, λ ватт на квадратный метр, на метр Вт / м 3 ML −1T −3
Сияющее воздействие H e джоуль на квадратный метр Дж / м 2 MT −2 Лучистая энергия, получаемая поверхностью на единицу площади, или, что эквивалентно, освещенность поверхности, интегрированная по времени облучения. Иногда это также называют «сияющим флюенсом».
Спектральная экспозиция H e, ν джоуль на квадратный метр на герц Дж⋅м −2 ⋅Гц −1 MT −1 Излучение поверхности на единицу частоты или длины волны. Последний обычно измеряется в Дж⋅м −2 нм −1 . Иногда это также называют «спектральным флюенсом».
H e, λ джоуль на квадратный метр, на метр Дж / м 3 ML −1T −2
Полусферический коэффициент излучения ε N / A 1 Излучение поверхности , деленное на выход черного тела при той же температуре, что и эта поверхность.
Спектральная полусферическая излучательная способность ε ν
 или
ε λ
N / A 1 Спектральная светимость поверхности , деленная на светимость черного тела при той же температуре, что и эта поверхность.
Направленная излучательная способность ε Ω N / A 1 Излучение , излучаемый на поверхности , разделенные , что излучаемый черного тела при той же температуре , как эта поверхность.
Спектрально-направленная излучательная способность ε Ω, ν
 или
ε Ω, λ
N / A 1 Спектральное свечение , излучаемое на поверхность , деленное на том , что из черного тела при той же температуре , как эта поверхность.
Полусферическое поглощение А N / A 1 Лучистый поток поглощается на поверхность , деленный на которые получены этой поверхность. Не следует путать с « поглощением ».
Спектральное полусферическое поглощение A ν
 или
A λ
N / A 1 Спектральный поток поглощается на поверхности , деленная на которые получены этой поверхности. Это не следует путать со « спектральным поглощением ».
Направленное поглощение А Ом N / A 1 Излучение поглощается на поверхности , деленной на сияния падающего на эту поверхность. Не следует путать с « поглощением ».
Спектральное направленное поглощение A Ω, ν
 или
A Ω, λ
N / A 1 Спектральный сияния поглощается на поверхности , деленной на спектральной энергетической яркости падающего на эту поверхность. Это не следует путать со « спектральным поглощением ».
Полусферическое отражение р N / A 1 Лучистый поток, отраженный от поверхности , делится на поток , принимаемый этой поверхностью.
Спектральная полусферическая отражательная способность R ν
 или
R λ
N / A 1 Спектральный поток отражается на поверхности , деленная на которые получены этой поверхности.
Направленное отражение R Ом N / A 1 Излучение отражается на поверхности , деленной на том , что полученные с помощью этой поверхности.
Спектральное направленное отражение R Ω, ν
 или
R Ω, λ
N / A 1 Спектральное сияние отражается на поверхность , деленный на которые получены этой поверхность.
Полусферический коэффициент пропускания Т N / A 1 Лучевой поток передается по поверхности , деленная на которые получены этой поверхности.
Спектральное полусферическое пропускание T ν
 или
T λ
N / A 1 Спектральный поток передается по поверхности , деленная на которые получены этой поверхности.
Направленное пропускание Т Ом N / A 1 Излучение передается по поверхности , деленная на которые получены этой поверхности.
Спектрально-направленное пропускание T Ω, ν
 или
T Ω, λ
N / A 1 Спектральное сияние передается по поверхности , деленный на которые получены этой поверхность.
Полусферический коэффициент затухания μ обратный счетчик м −1 L −1 Поток излучения, поглощаемый и рассеиваемый на объем на единицу длины, деленный на полученный этим объемом.
Коэффициент спектрального полусферического ослабления μ ν
 или
μ λ
обратный счетчик м −1 L −1 Спектральный лучистого потока поглощается и рассеивается по объему на единицу длины, деленное на том , что полученные этим объемом.
Коэффициент направленного затухания μ Ом обратный счетчик м −1 L −1 Сияние поглощается и рассеивается на объем на единицу длины, деленный на полученное этим объемом.
Коэффициент направленного спектрального ослабления μ Ω, ν
 или
μ Ω, λ
обратный счетчик м −1 L −1 Спектральная яркость поглощается и рассеивается на объем на единицу длины, деленный на полученное этим объемом.
См. Также: SI  · Радиометрия  · Фотометрия.

Смотрите также

использованная литература

внешние ссылки