Группа с операторами - Group with operators

В абстрактной алгебре , разделе математики , алгебраическую структурную группу с операторами или Ω- группу можно рассматривать как группу с множеством Ω, которое действует на элементы группы особым образом.

Группы с операторами широко изучались Эмми Нётер и ее школой в 1920-х годах. Она использовала эту концепцию в своей первоначальной формулировке трех теорем об изоморфизме Нётер .

Определение

Группа с операторами может быть определена как группа вместе с действием множества на :

что является распределительным по отношению к групповому закону:

Для каждого , приложение является тогда эндоморфизм из G . Исходя из этого, он приводит , что Ω-группа также может рассматриваться как группа G с индексированной семейства эндоморфизмов G .

называется операторной областью . Младшие эндоморфизмами называются гомотетии из G .

Принимая во внимание две группы G , H с таким же доменом оператора , А гомоморфизм групп с операторами гомоморфизм групп , удовлетворяющих

для всех и

Подгруппа S из G называется стабильной подгруппа , -подгруппа или -инвариантной подгруппа , если она уважает гомотетию, то есть

для всех и

Замечания по теории категорий

В теории категории , A группа с операторами может быть определена как объект в категории функторов Гр М , где М представляет собой моноид (т.е. категории с одним объектом ) и Гр обозначает категорию групп . Это определение эквивалентно предыдущему при условии, что это моноид (в противном случае мы можем расширить его, чтобы включить идентичность и все композиции).

Морфизм в этой категории является естественным преобразованием между двумя функторами ( т.е. две группы с операторами совместных же оператор доменом M ). Мы снова восстановить определение выше гомоморфизма групп с операторами (с F на компоненты природной трансформации).

Группа с операторами также является отображением

где есть множество групповых эндоморфизмов G .

Примеры

Приложения

Теорема Жордана – Гёльдера верна и в контексте групп операторов. Требование, чтобы группа имела композиционный ряд , аналогично требованию компактности в топологии и иногда может быть слишком строгим требованием. Естественно говорить о «компактности относительно множества», т. Е. Говорить о композиционных рядах, где каждая ( нормальная ) подгруппа является операторной подгруппой относительно множества операторов X рассматриваемой группы.

Смотрите также

Заметки

Рекомендации

  • Бурбаки, Николас (1974). Элементы математики: Алгебра I Главы 1–3 . Германн. ISBN 2-7056-5675-8.
  • Бурбаки, Николас (1998). Элементы математики: Алгебра I Главы 1–3 . Springer-Verlag. ISBN 3-540-64243-9.
  • Мак-Лейн, Сондерс (1998). Категории для рабочего математика . Springer-Verlag. ISBN 0-387-98403-8.