Завершение кольца - Completion of a ring

В абстрактной алгебре , завершение является одной из нескольких связанных функторов на кольцах и модулях , которые приводят в полных топологических кольцах и модулях . Завершение похоже на локализацию , и вместе они являются одними из самых основных инструментов в анализе коммутативных колец . Полные коммутативные кольца имеют более простую структуру, чем общие, и к ним применима лемма Гензеля . В алгебраической геометрии пополнение кольца функций R в пространстве X концентрируется на формальной окрестности точки X : эвристически это окрестность настолько мала, что все ряды Тейлора с центром в этой точке сходятся. Алгебраическое завершение строится способом , аналогичное завершение в виде метрического пространства с последовательностями Коши , и согласно с ним в том случае , когда R имеет метрику задается неархимедовом абсолютного значения .

Общая конструкция

Предположим, что E - абелева группа с убывающей фильтрацией

подгрупп. Затем определяется завершение (относительно фильтрации) как обратный предел :

Это снова абелева группа. Обычно E - аддитивная абелева группа. Если E имеет дополнительную алгебраическую структуру, совместимую с фильтрацией, например E - это фильтрованное кольцо , фильтрованный модуль или фильтрованное векторное пространство , то его завершение снова является объектом с той же структурой, которая завершена в топологии, определяемой фильтрацией. . Эта конструкция применима как к коммутативным, так и к некоммутативным кольцам . Как и следовало ожидать, когда пересечение равняется нулю, получается полное топологическое кольцо .

Топология Крулля

В коммутативной алгебре , фильтрация на коммутативное кольцо R по степеням правильного идеала Я определяет топологию Крулля (после того, как Wolfgang Крулля ) или I -адической топологии на R . Особенно важен случай максимального идеала , например выделенного максимального идеала оценочного кольца . Основой открытых окрестностей 0 в R даются полномочиями I п , которые вложены и образуют убывающую фильтрацию на R :

(Открытые окрестности любого гR задаются смежности г + I п .) Завершение является обратным пределом из фактор - колец ,

произносится "RI шляпа". Ядро канонического отображения П от кольца до его завершения является пересечением полномочий I . Таким образом, π инъективно тогда и только тогда, когда это пересечение сводится к нулевому элементу кольца; по теореме Крулля о пересечении это случай любого коммутативного нётерова кольца, которое является либо областью целостности, либо локальным кольцом .

Существует родственная топология на R - модулях, называемых также Krull или я - адическая топология . Базисом открытых окрестностей модуля M служат множества вида

Пополнение R -модуля M является обратным пределом частных

Эта процедура превращает любой модуль над R в полный топологический модуль над .

Примеры

  • Кольцо целых p -адических чисел получается дополнением кольца целых чисел в идеале ( p ).
  • Пусть Р = К [ х 1 , ..., х п ] быть кольцо многочленов в п переменных над полем K и максимальный идеал , порожденный переменными. Затем завершение является кольцо К [[ х 1 , ..., х п ]] из формальных степенных рядов в п переменных над K .
  • Принимая во внимание нётерово кольцо и идеальное -адическая завершение представляет собой изображение из кольца формальных степенных рядов, в частности, образ сюръекции
Ядро идеальное

Пополнения также могут быть использованы для анализа локальной структуры особенностей одного схемы . Например, аффинные схемы, связанные с кривой узловой кубической плоскости, имеют похожие особенности в начале координат при просмотре их графиков (обе выглядят как знак плюса). Обратите внимание, что во втором случае любая окрестность начала координат Зарисского по-прежнему является неприводимой кривой. Если мы используем завершения, то мы смотрим на «достаточно маленькую» окрестность, где узел состоит из двух компонентов. Взятие локализаций этих колец вдоль идеала и завершение дает и, соответственно, где - формальный квадратный корень в Более явно, степенной ряд:

Поскольку оба кольца задаются пересечением двух идеалов, порожденных однородным многочленом степени 1, мы можем алгебраически увидеть, что особенности «выглядят» одинаково. Это связано с тем, что такая схема представляет собой объединение двух неравных линейных подпространств аффинной плоскости.

Характеристики

1. Пополнение - это функториальная операция: непрерывное отображение топологических колец fR  →  S порождает отображение их пополнений,

Более того, если M и N - два модуля над одним топологическим кольцом R и fM  →  N - непрерывное отображение модулей, то f однозначно продолжается до отображения пополнений:

где модули над

2. завершение нётерова кольца R представляет собой плоский модуль над R .

3. Пополнение конечно порожденного модуля M над нётеровым кольцом R может быть получено расширением скаляров :

Вместе с предыдущим свойством это означает, что функтор пополнения конечно порожденных R -модулей точен : он сохраняет короткие точные последовательности . В частности, факторизация колец коммутирует с пополнением, что означает, что для любой факторной R -алгебры существует изоморфизм

4. Структурная теорема Коэна (равнохарактерный случай). Пусть R быть полным локальным нётеровым коммутативное кольцо с максимальным идеалом и полем вычетов K . Если R содержит поле, то

для некоторого n и некоторого идеала I (Эйзенбуд, теорема 7.7).

Смотрите также

Цитаты

использованная литература