Сопряженные переменные - Conjugate variables

Сопряженные переменные - это пары переменных, математически определенные таким образом, что они становятся двойниками преобразования Фурье , или, в более общем смысле, связаны через двойственность Понтрягина . Соотношения двойственности естественным образом приводят к соотношению неопределенности - в физике это называется принципом неопределенности Гейзенберга - между ними. С математической точки зрения сопряженные переменные являются частью симплектического базиса , а отношение неопределенности соответствует симплектической форме . Кроме того, сопряженные переменные связаны теоремой Нётер , который гласит, что если законы физики инвариантны относительно изменения одной из сопряженных переменных, то другая сопряженная переменная не будет изменяться со временем (т.е. будет сохраняться).

Примеры

Существует много типов сопряженных переменных, в зависимости от типа работы, которую выполняет определенная система (или которой она подвергается). Примеры канонически сопряженных переменных включают следующее:

  • Время и частота : чем дольше звучит музыкальная нота, тем точнее мы знаем ее частоту, но она охватывает большую продолжительность и, таким образом, является более распределенным событием или «мгновением» во времени. И наоборот, очень короткая музыкальная нота становится просто щелчком и поэтому более локализована во времени, но нельзя очень точно определить ее частоту.
  • Доплер и дальность : чем больше мы знаем о том, как далеко находится радиолокационная цель, тем меньше мы можем знать о точной скорости приближения или отступления, и наоборот. В этом случае двумерная функция доплера и дальности известна как функция неоднозначности радара или диаграмма неоднозначности радара .
  • Поверхностная энергия: γ  d A ( γ = поверхностное натяжение ; A = площадь поверхности).
  • Упругое растяжение: F  d L ( F = сила упругости; длина L в растяжении).

Производные действия

В классической физике производные действия - это переменные, сопряженные с величиной, по которой производится дифференцирование. В квантовой механике эти же пары переменных связаны принципом неопределенности Гейзенберга .

Квантовая теория

В квантовой механике сопряженные переменные реализуются как пары наблюдаемых, операторы которых не коммутируют. В традиционной терминологии они называются несовместимыми наблюдаемыми . Рассмотрим, например, измеримые величины, заданные положением и импульсом . В квантово-механическом формализме две наблюдаемые и соответствуют операторам и , которые обязательно удовлетворяют каноническому коммутационному соотношению :

Для каждого ненулевого коммутатора двух операторов существует «принцип неопределенности», который в нашем настоящем примере может быть выражен в виде:

В этом неточно определенном обозначении и обозначают «неопределенность» при одновременном указании и . Более точное и статистически полное утверждение о стандартном отклонении гласит:

В более общем смысле , для любых двух наблюдаемых и соответствующих операторов и , обобщенный принцип неопределенности определяются по формуле:

Теперь предположим, что мы должны явно определить два конкретных оператора, присвоив каждому конкретную математическую форму, так что пара удовлетворяет вышеупомянутому коммутационному соотношению. Важно помнить, что наш конкретный «выбор» операторов будет просто отражать одно из многих эквивалентных или изоморфных представлений общей алгебраической структуры, которая фундаментально характеризует квантовую механику. Обобщение формально обеспечивается алгеброй Ли Гейзенберга с соответствующей группой, называемой группой Гейзенберга .

Гидравлическая механика

В гамильтоновой механике жидкости и квантовой гидродинамике само действие (или потенциал скорости ) является сопряженной переменной плотности (или плотности вероятности ).

Смотрите также

Заметки